
International Journal of HydroClimatic Engineering 
Volume 1 Issue 1 

1 
 

Comparative Mapping of Flood-Susceptible Zones Using AHP and Machine 1 

Learning Models in a Data Scarce River Basin of Northeast India 2 

Ashesh Rudra Paul1 & Tilottama Chakraborty23 

1Department of Civil Engineering, Indian Institute of Technology 4 

Kharagpur, Kharagpur-721302, West Bengal, India 5 

2Department of Civil Engineering, National Institute of Technology 6 

Agartala, Jirania – 799046, West Tripura, India  7 

Abstract 8 

Flood-susceptible zone mapping is essential for effective flood risk management, enabling the 9 

identification of vulnerable areas and guiding targeted mitigation strategies. However, delineating 10 

flood-susceptible zones in data-scarce and topographically complex regions poses significant 11 

challenges. This study addresses these limitations by integrating Geographic Information Systems 12 

(GIS) with the Analytic Hierarchy Process (AHP) to assess flood susceptibility in the Haora River 13 

Basin, located in West Tripura, India. A total of nine flood-influencing parameters, including 14 

rainfall, elevation, slope, land use, and hydrological indices, were considered to develop a Flood 15 

Susceptibility Index (FSI). The resulting flood susceptibility map categorizes the basin into five 16 

classes: very low, low, moderate, high, and very high. The "Very High" zone covers 28.36 km², 17 

primarily concentrated in the low-lying urban areas around Agartala. The AHP model's predictive 18 

accuracy was validated using Receiver Operating Characteristic (ROC) curve analysis, which 19 

yielded an AUC of 0.848, indicating acceptable reliability. To enhance the robustness of the flood 20 

assessment, two machine learning models—Random Forest (RF) and Support Vector Machine 21 
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(SVM)—were also employed. These models achieved AUC values of 0.9483 (RF) and 0.9260 22 

(SVM), and demonstrated superior performance through lower MAE, MSE, and RMSE values 23 

compared to AHP. The integration of AHP-GIS with machine learning approaches offers a reliable 24 

and scalable framework for flood susceptibility mapping, especially in resource-limited 25 

environments. The methodology is generalizable to other vulnerable catchments across Northeast 26 

India and provides actionable insights for disaster planners and urban managers to prioritize high-27 

risk zones and improve flood resilience. 28 

Keywords: Flood-susceptibility mapping; Geographic Information Systems (GIS), Random 29 

Forest (RF), Support Vector Regression (SVM); Haora River Basin. 30 

1. Introduction 31 

Floods are among the most frequent and destructive natural hazards, inflicting severe impacts on 32 

human life, infrastructure, and ecosystems across the globe (Chaudhary & Piracha, 2021; Feng et 33 

al., 2023; Liu et al., 2023; Yu et al., 2022). These events not only damage property and agricultural 34 

areas but also disrupt transportation networks, displace populations, and result in long-term socio-35 

economic setbacks, particularly in densely inhabited or agriculturally dependent regions (Alabbad 36 

et al., 2021; Hossain et al., 2024; Kumar et al., 2020). The intensity and frequency of floods are 37 

influenced by both natural factors—such as topography, climate variability, and hydrology—and 38 

human-induced activities, including unplanned urban expansion and deforestation (Hoang & Liou, 39 

2024; Janizadeh et al., 2021; Pizzorni et al., 2024). 40 

Flood-Susceptible Zones (FSZs) are areas with a heightened likelihood of inundation due to a 41 

combination of geomorphological and climatic factors (Jain & Singh, 2023; Kumar et al., 2023). 42 

Identifying these zones is a vital step toward effective flood risk mitigation, as it assists planners, 43 
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disaster managers, and decision-makers in formulating early warning systems, zoning policies, and 44 

protective infrastructure (Munpa et al., 2024; M. M. Rahman et al., 2024; Rana et al., 2021). The 45 

delineation of FSZs also enables a better understanding of flood dynamics, allowing for more 46 

informed planning and response strategies (Jha & Afreen, 2020; Samansiri et al., 2022; Agrawal 47 

et al., 2024; Munawar et al., 2021). 48 

Traditionally, flood mapping relies on hydrological and hydraulic modeling or historical flood 49 

records. While these methods are valuable, they may not fully reflect future risks arising from 50 

climate change or rapid land use changes. As a result, there is increasing emphasis on advanced 51 

approaches that integrate multiple parameters. Among these, multi-criteria decision-making 52 

(MCDM) techniques, particularly the Analytic Hierarchy Process (AHP), have gained 53 

prominence. AHP enables both qualitative and quantitative criteria to be evaluated systematically 54 

by assigning relative weights based on expert judgment (Alam et al., 2024; Deo et al., 2024; Hadian 55 

et al., 2022). 56 

The main strength of AHP lies in its structured approach to decomposing complex decision 57 

problems into a hierarchy, making it easier to compare the relative importance of contributing 58 

factors such as rainfall, slope, and land use (Hamizahrul, 2024; R. Kumar, 2025; H. U. Rahman et 59 

al., 2021; Rane et al., 2023). When used in conjunction with Geographic Information Systems 60 

(GIS), AHP becomes a powerful tool for spatial flood risk assessment, allowing for the 61 

visualization and analysis of flood susceptibility zones in a comprehensive manner (Efraimidou & 62 

Spiliotis, 2024; Leta & Adugna, 2023; Mabrouk & Haoying, 2023). 63 

Despite these advances, the motivation behind this study stems from the pressing need to apply 64 

flood susceptibility models in data-scarce, high-risk basins like the Haora River Basin in Tripura, 65 

which remain largely underrepresented in current flood mapping literature. Rapid urbanization, 66 
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inadequate drainage infrastructure, and increasing rainfall variability in the region have made flood 67 

risk management more urgent than ever. Moreover, there is a growing demand to move beyond 68 

traditional AHP models and explore how machine learning-based approaches can complement or 69 

improve flood prediction accuracy, especially in regions where field data are limited or outdated. 70 

Even though the widespread adoption of AHP-based flood mapping techniques, notable gaps 71 

remain in their application, particularly in under-studied, data-scarce regions. Most existing 72 

research focuses on well-instrumented river basins, leaving smaller and vulnerable catchments 73 

relatively unexplored. One such region is the Haora River Basin in West Tripura, India. Due to its 74 

monsoon-dominated climate, steep slopes, and rapid urban growth, this area is prone to recurrent 75 

flooding (Ahmed et al., 2024; Nath et al., 2024). However, limited efforts have been made to apply 76 

modern geospatial and decision-support methods for flood-prone zoning in this basin. 77 

This study seeks to address that gap by applying a GIS-integrated AHP framework combined with 78 

machine learning (ML) models, such as Random Forest (RF) and Support Vector Machine (SVM), 79 

to assess flood risk in the Haora River Basin. This region is of strategic importance as it 80 

encompasses the state capital, Agartala, which frequently suffers from monsoonal floods due to 81 

inadequate drainage and urban encroachment (Debnath et al., 2022; Saha et al., 2021). Given the 82 

rising flood risk associated with climate extremes and land use change, developing a reliable flood-83 

prone map for the Haora Basin is essential for sustainable urban planning and disaster risk 84 

reduction (Kumar, 2017; Saha et al., 2021). 85 

A key novelty of this study lies in its integration of traditional AHP with advanced ML-based 86 

susceptibility modeling, thereby enabling a comparative evaluation between knowledge-driven 87 

and data-driven approaches. This dual-model framework enhances model robustness and allows 88 

validation of expert-based judgments through statistical accuracy metrics. Another major 89 
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contribution is the application of multicollinearity analysis (VIF and TOL) to ensure that flood-90 

conditioning parameters are statistically independent, which is often overlooked in standard AHP-91 

GIS studies. The study also addresses data integration challenges by resampling and harmonizing 92 

datasets with different spatial resolutions (e.g., Sentinel-2 LULC at 10 m and SRTM-derived layers 93 

at 30 m), ensuring spatial consistency in the modeling process. 94 

By integrating key flood-influencing variables such as rainfall, elevation, slope, land use, and 95 

hydrological indices, this study develops a Flood Susceptibility Index (FSI). The performance of 96 

each model (AHP, RF, and SVM) is evaluated using the Receiver Operating Characteristic (ROC) 97 

curve analysis and the corresponding Area Under the Curve (AUC) values, as well as error metrics 98 

(MAE, MSE, RMSE) for ML models. 99 

Therefore the final objective of this study is to develop a scientifically robust and spatially detailed 100 

flood susceptibility mapping framework for the Haora River Basin using a hybrid approach that 101 

integrates AHP and machine learning models (RF and SVM) within a GIS environment, with the 102 

aim of enhancing flood risk prediction in data-scarce, topographically complex regions like 103 

Tripura, and supporting evidence-based urban planning and disaster mitigation strategies. 104 

2. Study Area 105 

The Haora River is a significant watercourse located in the West Tripura District of the 106 

northeastern Indian state of Tripura. Geographically, the basin spans between 23°37′N to 23°53′N 107 

and 91°15′E to 91°37′E, as depicted in Figure 1. Covering a catchment area of approximately 108 

405.8 square kilometers, the river system extends across both India and Bangladesh, with the 109 

majority of its expanse lying within southern West Tripura (Kumar, 2017). The basin is bordered 110 
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by the Khowai and Sepahijala Districts on the east and south, respectively, and by the international 111 

boundary with Bangladesh to the north and northwest. 112 

The Haora River originates from the western slopes of the Baramura hill range. For the first 6.6 113 

kilometers, the River flows through elevated, hilly terrain before descending into the foothill zone 114 

near Chandrasadhubari, situated at an altitude of 83 meters. From there, the River continues its 115 

course for about 21.8 kilometers through the middle catchment until it reaches the town of Jirania, 116 

where the elevation reduces to 32 meters. As it enters the plains, the River flows at altitudes below 117 

30 meters until it eventually joins the Titas River in Bangladesh at a final elevation of 10 meters. 118 

The overall length of the River is around 61.2 kilometers, with approximately 52 kilometers 119 

flowing through Indian territory (Bandyopadhyay et al., 2014). The region is characterized by 120 

gently undulating denudational terrain, locally known as "tilla lands," which vary in elevation from 121 

6 to 201 meters. These tilla lands form part of the Dupitila geological formation and are primarily 122 

composed of sandy clay, clayey sandstone, and lateritic soils. These geological features 123 

significantly influence the basin's hydrological behavior, particularly its susceptibility to flood 124 

hazards. 125 

The river basin's diverse topographical and geological setting renders it highly vulnerable to flood 126 

events, especially during periods of intense rainfall. Given the River's importance in sustaining 127 

water supply, agriculture, and infrastructure in the region, the Haora River Basin is a critical area 128 

requiring focused flood risk assessment. The variability in slope and landform across the basin 129 

adds to the complexity of flood response, making it imperative to adopt detailed spatial analysis 130 

for effective flood-prone area mapping and management. 131 
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 132 

Figure 1:  Geographical location of the Haora River Basin, highlighting the Study Area 133 

3. Materials and Methods 134 

This study adopts a multi-step framework to assess flood susceptibility in the Haora River Basin, 135 

employing both expert-based (AHP-GIS) and data-driven (machine learning) approaches. A total 136 
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of nine flood-conditioning parameters were selected based on hydrological, topographical, and 137 

geomorphological relevance: Rainfall, Elevation, Slope, Flow Accumulation, Proximity to River, 138 

Land Use and Land Cover (LULC), Topographic Wetness Index (TWI), Geomorphology, and 139 

Profile Curvature. The overall methodology consists of the following key steps: 140 

Step 1: Multicollinearity Analysis 141 

To ensure the independence of input variables, multicollinearity was assessed using Tolerance 142 

(TOL) and Variance Inflation Factor (VIF). Parameters with acceptable VIF values were retained 143 

for further analysis. 144 

Step 2: Weight Assignment via AHP 145 

The Analytic Hierarchy Process (AHP) was applied to derive the relative weights of the selected 146 

parameters based on expert judgment through a pairwise comparison matrix. 147 

Step 3: FSI Map Generation via AHP-GIS 148 

The weighted parameters were integrated using a GIS-based weighted overlay technique to 149 

generate a Flood Susceptibility Index (FSI) map, classified into five susceptibility zones. 150 

Step 4: Machine Learning-Based Flood Susceptibility Modeling 151 

To complement and compare with the AHP results, two machine learning algorithms, such as RF 152 

and SVM, were applied using the same set of input variables. 153 

Step 5: Sensitivity Analysis of AHP Weights 154 

To evaluate the robustness of AHP-derived weights, a sensitivity analysis was performed using 155 

the Stillwell ranking method, incorporating Rank Sum Weight (RSW) and the Reciprocal Rank 156 

Weight (RRW) techniques. 157 
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Step 6: Model Validation 158 

All three models (AHP, RF, and SVM) were validated using Area Under the Receiver-Operating 159 

Characteristic Curve (AUC-ROC) analysis, while RF and SVM were further evaluated using Mean 160 

Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) to assess 161 

predictive performance. 162 

An overview of the entire methodological workflow is presented in Figure 2. 163 

3.1.Data Collection and Processing 164 

The data for this study were sourced from various reliable and authoritative databases to ensure 165 

comprehensive analysis and accurate flood-prone region mapping in the Haora River Basin. The 166 

primary parameter used is rainfall, with data spanning from 1981 to 2023, obtained from the India 167 

Meteorological Department (IMD).  168 

This dataset is crucial for understanding the temporal and spatial variations in precipitation, which 169 

significantly influence flood events in the region. LULC data were obtained using Sentinel-2 170 

satellite imagery at a 10m resolution for the year 2022—the LULC map, accessible through the 171 

Living Atlas platform (https://livingatlas.arcgis.com/landcoverexplorer/#mapCenter=-172 

3.28600%2C31.34000%2C3&mode=step&year=2022, accessed in Jan 2025). For elevation data, 173 

a Digital Elevation Model (DEM) with 30m resolution was used, sourced from the USGS Earth 174 

Explorer (https://earthexplorer.usgs.gov/, accessed in Jan 2025). This DEM is pivotal for 175 

calculating the slope and other terrain-related parameters, which influence water flow and flood 176 

behavior in the basin. Geological and geomorphological data were sourced from the Geological 177 

Survey of India's Bhukosh database (https://bhukosh.gsi.gov.in/Bhukosh/Public, accessed in Jan  178 

 179 
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 180 

Figure 2:  Methodological flowchart for flood susceptibility mapping in the Haora River Basin using Analytic Hierarchy Process 181 
(AHP), Random Forest (RF), and Support Vector Machine (SVM) Method182 
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2025), providing insights into the regional geological structure and terrain, which directly affect 183 

flood dynamics and the River's morphological changes. 184 

To address the spatial resolution mismatch between Sentinel-2 (10 m) and DEM (30 m), all input 185 

layers were resampled to a uniform 30 m grid using bilinear interpolation for continuous data and 186 

nearest-neighbor interpolation for categorical data (e.g., LULC). This harmonization ensured 187 

spatial consistency in model inputs and avoided distortion in classification outputs during GIS-188 

based overlay and machine learning analysis. 189 

Table 1: Parameters, descriptions, and data sources used for identifying flood-prone areas 190 

Parameters Description Sources 

Rainfall (mm) 
Rainfall data for the period 1981–

2023. 

India Meteorological Department 
(IMD) 

(https://www.imdpune.gov.in/cmpg/Gri
ddata/Rainfall_25_NetCDF.html) 

LULC 
Land Use Land Cover map was 

obtained using Sentinel-2 satellite 
data. 

Sentinel-2 10m Land Use/Land Cover 
(https://livingatlas.arcgis.com/landcover

explorer/#mapCenter=-
3.28600%2C31.34000%2C3&mode=ste

p&year=2022) 

Elevation (m) Elevation data with 30 m resolution. 
USGS Earth Explorer 

(https://earthexplorer.usgs.gov/) 

Geomorphology 
Geological and geomorphological 

data. 

GSI Bhukosh 
(https://bhukosh.gsi.gov.in/Bhukosh/Pu

blic) 

Proximity to the 
River (km) 

Calculated as the distance from the 
nearest River using a river shape file 

in ArcGIS. 

Derived using ArcGIS tools and a river 
shape file. 

Slope (Degree) 
Slope calculated using the Digital 

Elevation Model (DEM). 

Derived using ArcGIS tools and DEM. 
 

Flow Accumulation 
(pixels) 

Flow accumulation values are 
determined from the DEM. 

Topographic 
Wetness Index 

(TWI) 

Indicator of topographic control on 
hydrological processes, derived from 

DEM data. 

Profile Curvature 
Describes the curvature of the terrain 

surface, calculated from DEM. 

The distance from the River to key locations in the study area was calculated using a river shapefile 191 

and ArcGIS tools. This parameter is important for understanding the proximity of flood-prone 192 
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areas to the River, which influences flood risk. Slope data, calculated from the DEM, were derived 193 

using ArcGIS tools. The slope of the terrain plays a critical role in determining surface runoff, 194 

which in turn impacts the extent and severity of flooding. Flow accumulation values, derived from 195 

the DEM, help in identifying areas that contribute to runoff and are susceptible to flooding. This 196 

was complemented by the calculation of the TWI, which indicates the topographic control on 197 

hydrological processes, derived from the DEM data. Finally, profile curvature, which describes 198 

the curvature of the terrain surface, was calculated from the DEM and is helpful in understanding 199 

water flow patterns and potential flood hotspots. All these data parameters were integrated into 200 

GIS software for spatial analysis and flood susceptibility mapping in the Haora River Basin. 201 

To address the challenge of limited ground-based data, the study used freely available remote 202 

sensing datasets and hydrological indices derived from DEMs and satellite imagery. Parameters 203 

were selected based on their relevance and accessibility in similar data-scarce environments. 204 

Additionally, AHP was employed for expert-based weighting where empirical data was limited, 205 

and ML models were trained using minimal but verified historical flood occurrence points. The 206 

description of all these data parameters is summarized in tabulated form in Table 1.  207 

3.2.Preparation of thematic layers 208 

As part of the present study, nine thematic layers were selected as flood susceptibility parameters 209 

for the Haora River Basin. The methodology for selecting and processing the flood susceptibility 210 

parameters is explained in detail below. The thematic layers of all parameters are visualized in 211 

Figure 3 to provide a clear spatial representation of the data utilized in this study. 212 

The selection of these nine flood-conditioning parameters was based on their demonstrated 213 

relevance to flood generation and propagation, as supported by hydrological theory and previous 214 
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flood susceptibility studies (Kaya & Derin, 2023; Swain et al., 2020; Tehrany et al., 2014). Core 215 

parameters like rainfall, elevation, slope, and flow accumulation control runoff and accumulation 216 

dynamics, while LULC, TWI, and proximity to rivers influence infiltration and flood exposure. 217 

Geomorphology and profile curvature provide terrain-specific insights into water flow and 218 

accumulation patterns. Together, these layers represent a comprehensive set of biophysical factors 219 

that drive flooding in the Haora River Basin. 220 

3.2.1. Rainfall  221 

Rainfall significantly influences river discharge and flood risk. The rainfall pattern in the Haora 222 

River Basin was interpolated using the Inverse Distance Weighting (IDW) method to create a 223 

rainfall map. Areas with higher rainfall were assigned higher ranks, indicating an increased 224 

likelihood of flooding. The rainfall distribution map is an essential component of the flood-prone 225 

area assessment. 226 

3.2.2. LULC 227 

LULC significantly impacts runoff patterns and groundwater quality, with built-up areas and 228 

barren lands promoting higher surface runoff and vegetated areas encouraging water infiltration. 229 

In the Haora River Basin, urban areas, which are more vulnerable to flooding, were assigned the 230 

highest rank (rank 5) due to their high contribution to flood risk.  231 

3.2.3. Elevation  232 

Elevation plays a crucial role in water flow, with water generally flowing from higher to lower 233 

elevations, accumulating in lower areas. A Jenks natural breaks method was used to classify Haora 234 

River Basin elevation data into five distinct classes. Lower elevation zones, which are more prone 235 

to water accumulation, were assigned higher ranks, indicating a higher contribution to flood 236 

vulnerability.  237 
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3.2.4. Geomorphology  238 

Geomorphology significantly influences flood susceptibility in the Haora River Basin. The land is 239 

categorized into five geomorphological classes: Flat Areas (Rank 5), which are highly prone to 240 

flooding due to poor drainage; and Steep Areas (Rank 1), which experience rapid runoff and are 241 

less prone to flooding. These classifications help assess flood risk across different terrains of the 242 

basin. 243 

3.2.5. Proximity to the River 244 

Distance from the River is a crucial parameter in flood risk assessment, as areas located close to 245 

the River are at a higher risk of flooding. A buffer zone of 2 km intervals was created along both 246 

sides of the Haora River using ArcGIS. Higher flood risk was assigned to areas within a 2 km 247 

distance from the River, while areas further away (6–8 km) were given lower ranks, indicating 248 

reduced flood risk. 249 

3.2.6. Slope  250 

Slope is a significant factor influencing water accumulation, as areas with low or gentle slopes 251 

tend to retain more water. The Haora River Basin has relatively gentle slopes in the central 252 

floodplain area, which increases the risk of flooding. On the other hand, steeper slopes are found 253 

in the surrounding hilly regions. The slope was classified into different categories based on the 254 

gradient, with lower slopes assigned higher ranks for increased flood susceptibility.  255 

3.2.7. Flow Accumulation  256 

Flow accumulation represents the sum of water flowing down a slope into cells of the output raster. 257 

In the Haora River Basin, flow accumulation varies from 0 to 220553, with lower values observed 258 

near lower-order stream confluences and higher values near higher-order stream confluences. As 259 
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a result of high accumulation areas being more vulnerable to flooding, the parameter was divided 260 

into five classes using the Jenks natural breaks method. Flow accumulation identifies areas where 261 

surface runoff converges, which are typically more susceptible to inundation (Bales & Wagner, 262 

2009; Prokešová et al., 2022). In regions like the Haora Basin, where rainfall intensity is high and 263 

drainage is constrained, this parameter helps pinpoint natural water collection zones 264 

3.2.8. Topographic Wetness Index (TWI) 265 

The TWI reflects the influence of topography on hydrological processes, especially runoff and 266 

accumulation of flows. It was calculated using the equation.  267 

                                                                   TWI = ln(α/tanβ)                                                            (1)        268 

where, α is the contributing area at the upslope and β is the topographic gradient. Higher TWI 269 

values indicate areas more vulnerable to flooding due to greater water accumulation. For the Haora 270 

River Basin, areas with higher TWI values were assigned higher ranks, contributing significantly 271 

to flood susceptibility. 272 

3.2.9. Profile Curvature  273 

Profile curvature indicates the direction of maximum slope. Concave surfaces (positive curvature 274 

values) accelerate flow and encourage water accumulation, while convex surfaces (negative 275 

curvature values) decelerate flow and reduce water accumulation. In this study, areas with positive 276 

curvature were assigned higher ranks for flood susceptibility, as they facilitate water accumulation. 277 

Profile curvature influences the acceleration or deceleration of flow, which in turn affects erosion 278 

and deposition processes. Positive (concave) curvature zones tend to accumulate water, making 279 

them locally relevant for flood-prone mapping (Idrees et al., 2022). 280 
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 281 

Figure 3: Reclassified Thematic Map of Input Parameters Used for AHP Method, Ranked from 282 
Very Low (1) to Very High (5) 283 

To ensure the robustness of the flood susceptibility modeling, a multicollinearity analysis was 284 

conducted among the selected flood-influencing factors. Multicollinearity refers to a statistical 285 

phenomenon where two or more predictor variables in a model are highly correlated, potentially 286 

leading to unreliable estimates of their individual contributions. Its presence can inflate the 287 

variance of model coefficients and compromise the interpretability of both statistical and machine 288 

learning models. Therefore, prior to applying any modeling techniques, it was essential to examine 289 

the interrelationships among the independent variables. 290 

 291 
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3.3.Multicollinearity Analysis 292 

To ensure the robustness and statistical validity of the flood susceptibility modeling, a 293 

multicollinearity analysis was conducted among the selected flood-influencing factors. 294 

Multicollinearity refers to a condition where two or more predictor variables are highly correlated, 295 

potentially inflating the variance of coefficient estimates and compromising the stability and 296 

interpretability of both statistical and machine learning models  (Saha et al., 2023). Addressing 297 

multicollinearity is essential before applying regression-based or model-based techniques to avoid 298 

biased weight estimations and misinterpretation of variable importance (Mukherjee & Singh, 299 

2020). 300 

In this study, two standard diagnostic measures were employed to assess multicollinearity: 301 

Tolerance (TOL) and the Variance Inflation Factor (VIF). Tolerance measures the proportion of a 302 

variable's variance that is not explained by other predictors in the model, with values closer to zero 303 

indicating stronger multicollinearity. The VIF, which is the reciprocal of tolerance, indicates how 304 

much the variance of an estimated regression coefficient increases due to collinearity. The VIF, 305 

introduced by Marquardt (1970), is the reciprocal of tolerance and quantifies how much the 306 

variance of a regression coefficient is inflated due to multicollinearity. The mathematical 307 

expressions are as follows: 308 

𝑇𝑂𝐿௝ = 1 − 𝑅௝
ଶ                                                                            (2) 309 

𝑉𝐼𝐹௝ =
1

𝑇𝑂𝐿௝
                                                                                  (3) 310 

Where, 𝑅௝
ଶ is the coefficient of determination when the 𝑗௧௛ predictor is regressed against all other 311 

predictors. In general, a VIF value greater than 10 or a Tolerance value less than 0.1 is considered 312 
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indicative of serious multicollinearity that may require corrective measures, such as variable 313 

elimination or transformation. 314 

In this analysis, all selected variables were found to have acceptable TOL and VIF values, 315 

indicating that they were sufficiently independent and could be retained for further modeling. This 316 

diagnostic step ensured that the input variables used in the AHP-based MCDM and machine 317 

learning models (RF and SVM) were statistically valid and free from redundancy, thereby 318 

enhancing the reliability of the flood susceptibility assessment. 319 

3.4.Application of MCDM and Development of Flood Susceptibility Index (FSI) 320 

To evaluate flood risk across the Haora River Basin, this study employed an MCDM framework 321 

to rank and weight key flood-influencing parameters. Specifically, the AHP was utilized to 322 

determine the relative importance of the nine selected indicators. The AHP technique is well-323 

regarded for its structured approach in decision-making, especially when handling both qualitative 324 

and quantitative inputs  (Hadian et al., 2022; Paul, A.R., Saha, 2021). AHP was chosen over other 325 

MCDM methods due to its suitability in data-scarce regions, its structured expert-driven design, 326 

and its wide adoption in flood risk mapping under similar conditions. 327 

Initially introduced by T.L. Saaty in the late 1970s, AHP facilitates the prioritization of factors by 328 

structuring complex problems into a hierarchy, enabling systematic pairwise comparisons (Saaty, 329 

1990, 2004). In the context of this study, AHP was used to compute weights for each thematic 330 

parameter contributing to flood susceptibility in the Haora catchment. These weights were later 331 

integrated to develop the Flood Susceptibility Index (FSI). 332 

Step 1: Pairwise Comparison Matrix (PCM) 333 
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The first step involved constructing a pairwise comparison matrix (PCM), where each element 334 

represents the relative importance of one parameter compared to another. We compared the 335 

importance of the factors using Saaty's scale from 1 (equal importance) to 9 (extreme importance) 336 

(see Table 2). 337 

Table 2: Saaty's Fundamental AHP Scale 338 

Importance level  Description 
1 Equal importance 
3 Moderate importance 
5 Strong importance 
7 Very strong importance 
9 Extreme importance 
2,4,6,8 Intermediate values 

 For instance, if rainfall is considered far more critical than geomorphology, a higher score is 339 

assigned to the rainfall-to-geomorphology cell, and the reciprocal value is assigned to the inverse 340 

comparison. The general structure of the PCM is expressed as: 341 

                                        𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1 𝑎ଵଶ 𝑎ଵଷ … 𝑎ଵଽ
ଵ

௔భమ
1 𝑎ଶଷ … 𝑎ଶଽ

ଵ

௔భయ

ଵ

௔మయ
1 … 𝑎ଷଽ

⋮ ⋮ ⋮ ⋱ ⋮
ଵ

௔భవ

ଵ

௔మవ

ଵ

௔యవ
… 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

                                                                  (4) 342 

Step 2: Weight Calculation 343 

Once the PCM is populated, the next step is to compute the relative weights of the factors. This is 344 

achieved by calculating the geometric mean of each row in the PCM. The geometric mean for the 345 

𝑖௧௛ factor is computed as: 346 

                                                 𝐺𝑀 = ඥ𝑎௜ଵ × 𝑎௜ଶ × … × 𝑎௜ଽ
೙                                                              (5) 347 
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where  𝑛 = 9 is the total number of factors, and 𝑎௜௝  represents the matrix elements. To normalize 348 

these weights, each geometric mean is divided by the sum of all geometric means: 349 

                                                              𝑤௜ =
𝐺𝑀௜

∑ 𝐺𝑀௜
௡
௜ୀଵ

                                                                                (6) 350 

where  𝑤௜ is the normalized weight for the 𝑖௧௛ factor, reflecting its relative importance in 351 

influencing Flood Susceptibility within the Haora River catchment. 352 

Step 3: Consistency Check 353 

To ensure the reliability of the judgments used in the matrix, a consistency ratio (CR) was 354 

calculated. First, the maximum eigenvalue (λmax) of the matrix is estimated, followed by 355 

computing the consistency index (CI):  356 

                                                                𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 1

𝑛 − 1
                                                                               (7) 357 

The consistency ratio is then derived using: 358 

                                                                  𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                                                                      (8) 359 

where RI stands for Random Index, reliant on the matrix size. If CR≤0.10, the level of consistency 360 

is deemed acceptable. 361 

Step 4: Calculation of Flood Susceptibility Index (FSI) 362 

Once the ranks and weights were finalized, the Flood Susceptibility Index was computed using the 363 

weighted sum of ranked values for each parameter: 364 

                                                   𝐹𝑆𝐼 = ෍ 𝑤௜ ×

௡

௜ୀଵ

 𝑟௜                                                                                     (9) 365 



International Journal of HydroClimatic Engineering 
Volume 1 Issue 1 

21 
 

where, 𝑤௜ is the weight of the 𝑖௧௛ parameter and 𝑟௜ is the rank assigned to that parameter for a 366 

particular spatial unit. The final FSI values were used to classify the study area into five flood risk 367 

categories—'Very Low', 'Low', 'Moderate', 'High', and 'Very High'. This classification facilitates 368 

targeted intervention and prioritization for flood mitigation. The FSI map highlights critical zones, 369 

aiding stakeholders in decision-making related to flood preparedness and land use planning.  370 

To ensure comparability among input parameters with differing units and scales, all thematic 371 

layers were normalized using a rank-based reclassification approach. Each layer was divided into 372 

five ordinal classes, ranked from 1 (very low susceptibility) to 5 (very high susceptibility), based 373 

on hydrological logic and their relative influence on flood generation. For instance, areas with low 374 

elevation, high rainfall, gentle slopes, and proximity to the river were assigned higher ranks due 375 

to their greater flood potential. Continuous variables (e.g., elevation, slope, flow accumulation) 376 

were reclassified using the Jenks natural breaks method, while categorical variables (e.g., LULC, 377 

geomorphology) were ranked based on flood vulnerability from prior studies and expert judgment. 378 

This standardization allowed all layers to be integrated through the weighted overlay technique in 379 

GIS to generate the FSI map. 380 

3.5. Machine Learning-Based Flood Susceptibility Modeling 381 

To develop an accurate flood susceptibility map for the study area, two supervised machine 382 

learning algorithms—Random Forest (RF) and Support Vector Machine (SVM)—were applied. 383 

These algorithms were chosen due to their proven effectiveness in handling complex nonlinear 384 

relationships and high-dimensional environmental datasets. The modeling process utilized nine 385 

flood-conditioning factors, and the corresponding flood inventory data were randomly divided into 386 

70% training and 30% testing subsets to ensure balanced representation of flooded and non-387 

flooded classes. 388 
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3.5.1 Random Forest (RF) 389 

Random Forest is an ensemble learning algorithm that builds multiple decision trees using different 390 

subsets of training data and predictor variables. Each decision tree makes an individual prediction, 391 

and the final classification is determined through a majority voting scheme. This method reduces 392 

overfitting and improves model robustness. In this study, the RF model was trained using the 70% 393 

training subset, while the remaining 30% was used for testing. The number of trees and the number 394 

of features considered at each split were optimized through grid search and cross-validation 395 

techniques. The underlying principle and flow of the Random Forest algorithm used in this study 396 

are visually depicted in Figure 4, which shows how multiple trees contribute to the final 397 

classification through majority voting. 398 

 399 

Figure 4: General schematic representation of the Random Forest (RF) algorithm, illustrating 400 
how multiple decision trees contribute to the final prediction through majority voting. 401 

3.5.2 Support Vector Machine (SVM) 402 

Support Vector Machine is a powerful classification technique that aims to identify an optimal 403 

boundary between different classes in the feature space. For datasets that are not linearly separable, 404 

SVM applies a kernel function to transform the data into a higher-dimensional space, where a clear 405 
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decision boundary can be established. In this study, the Radial Basis Function (RBF) kernel was 406 

used due to its effectiveness in environmental modeling tasks. 407 

The model was trained on the 70% training data and tested on the 30% holdout set. Key parameters, 408 

including the penalty parameter and kernel coefficient, were fine-tuned using grid search with 10-409 

fold cross-validation. The model's performance was assessed using the same evaluation metrics as 410 

RF to ensure consistency. A conceptual overview of the SVM model applied in this study is 411 

illustrated in Figure 5, highlighting the use of kernel transformations and the classification process. 412 

 413 

Figure 5: General schematic of the Support Vector Machine (SVM) model using a Radial Basis 414 
Function (RBF) kernel. Input features are transformed into a higher-dimensional space through 415 

kernel functions to identify the optimal hyperplane for classification. 416 

Both RF and SVM models were implemented using the scikit-learn library in Python. The trained 417 

models were applied to spatial predictor layers within a GIS environment to produce flood 418 

susceptibility maps across the study region.  419 

To assess the performance and generalization ability of the machine learning models during both 420 

training and validation, several statistical evaluation metrics were employed. These include Mean 421 
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Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). These 422 

metrics quantify the difference between predicted and observed class labels or values and provide 423 

insights into model accuracy and reliability. The equations used to compute these indices are as 424 

follows: 425 

𝑀𝐴𝐸 =
1

𝑛
෍|𝑦௜ − 𝑦పෝ|                                                                     (10)

௡

௜ୀଵ

 426 

𝑀𝑆𝐸 =
1

𝑛
෍(𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ

                                                                    (11) 427 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                                               (12) 428 

where, 𝑛  is the total number of observations, 𝑦௜  is the actual observed value, and 𝑦పෝ  is the predicted 429 

value from the model. These error metrics were computed for both the training and testing phases 430 

to support the classification metrics (accuracy, precision, etc.) and provide a comprehensive 431 

evaluation of model performance in flood susceptibility mapping. 432 

3.6.Sensitivity-Based Validation of AHP Parameter Weighting  433 

While the AHP is a powerful tool for assigning weights to criteria, it involves a degree of 434 

subjectivity, particularly in how weights are derived from expert judgment. To strengthen the 435 

credibility of the model, this study incorporated a sensitivity analysis using the Stillwell ranking 436 

technique. Through the comparison of the AHP-derived weights with alternative ranking methods, 437 

we provide cross-validation of the weights developed by AHP. 438 

According to Stillwell's ranking method, two comparative weighting functions can be used: the 439 

Rank Sum Weight (RSW) and the Reciprocal Rank Weight (RRW). These methods are useful for 440 
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validating how different ranking strategies affect the distribution of weights assigned to each 441 

parameter. The two weighting approaches are defined as follows: 442 

                                                                𝑊௜
ோௌ =

൫𝑛 − 𝑅௝ + 1൯

∑ ൫𝑛 − 𝑅௝ + 1൯௡
௝ୀଵ

                                                                   (13) 443 

                                                                          𝑊௜
ோோ =

ଵ

ோೕ

∑
ଵ

ோೖ

௡
௝ୀଵ

൙                                                                 (14) 444 

Here, 𝑊௜
ோௌand 𝑊௜

ோோ  represent the normalized weights derived from the Rank Sum and Reciprocal 445 

Rank methods, respectively. In these equations, 𝑛 is the total number of attributes being analyzed.  446 

𝑅௝  is the rank assigned to the 𝑗௧௛attribute, arranged in ascending order based on importance.  447 

𝑊௜
ோௌ normalizes the weights by dividing the rank-adjusted values by their total sum.  448 

𝑊௜
ோோ  normalizes weights based on the reciprocal of the ranks. This approach provides an additional 449 

layer of validation, enabling a comparative evaluation of the weights generated by AHP and 450 

ensuring consistency in the prioritization of factors influencing flood vulnerability.   451 

3.7. Validation of Flood Susceptibility Zone (FSZ) Map Using ROC-AUC 452 

In this research, the FSZ map for the Haora River Basin has been validated using the ROC-AUC 453 

method. This statistical approach is widely recognized for evaluating the performance of predictive 454 

models and provides an effective measure of the accuracy of spatial predictions. ROC-AUC 455 

analyses are particularly useful for assessing the accuracy of FSZ maps in identifying flood-prone 456 

areas. As a result, a model's sensitivity and specificity are assessed objectively, allowing an 457 

objective review of its performance (Darabi et al., 2020; Ghosh et al., 2022; Vilasan & Kapse, 458 

2022). The observed flood data for the Haora River Basin, collected and reported by Chakraborty 459 

& Pan (2012) and  Kuntal (2015), have been used as the ground truth for validation purposes. 460 
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In the two-dimensional ROC plot, the vertical axis denotes sensitivity (i.e., the true positive rate), 461 

while the horizontal axis represents 1 minus specificity, corresponding to the false positive rate. 462 

These parameters are mathematically defined using equations derived by Swets (1988): 463 

                                             𝑥 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1 −
்ே

்ேା
                                                (15) 464 

                                            𝑦 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
்௉

்ேାிே
                                                                     (16) 465 

Here, TP refers to true positive locations that are accurately classified as flood-prone areas, while 466 

TN indicates true negatives, which are correctly identified as regions not susceptible to flooding. 467 

FP represents false positives, where areas are mistakenly classified as flood-prone, and FN 468 

corresponds to false negatives, where flood-prone areas are incorrectly labeled as non-flood-prone. 469 

The ROC curve is plotted based on these parameters, and the area under the curve (AUC) 470 

quantifies the model's predictive performance. An AUC value closer to 1 indicates excellent 471 

predictive accuracy, while a value around 0.5 reflects a model with no discriminative power. 472 

4. Results and Discussion 473 

4.1. Multicollinearity Analysis 474 

The results of the multicollinearity analysis for the nine selected flood-conditioning factors are presented 475 

in Table 3, based on the computed Tolerance (TOL) and Variance Inflation Factor (VIF) values.. All 476 

variables exhibited TOL values well above the critical threshold of 0.1 and VIF values below 10, indicating 477 

the absence of significant multicollinearity among the predictors. Specifically, TOL values ranged from 478 

0.374 to 0.703, while the corresponding VIF values varied between 1.421 and 2.673. These findings suggest 479 

that the selected variables are sufficiently independent and do not exhibit problematic intercorrelation that 480 

could distort model estimation or interpretation. 481 
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Table 3: The computed TOL and VIF values for the nine selected variables 482 
 

TOL VIF 
Rainfall 0.477 2.096 
Elevation 0.479 2.088 
Slope 0.648 1.543 
Proximity to the River 0.594 1.684 
Flow Accumulation 0.512 1.951 
TWI 0.374 2.674 
LULC 0.464 2.154 
Geomorphology 0.703 1.541 
Profile Curvature 0.703 1.421 

 483 

4.2. Results of AHP-Based Flood Susceptibility Mapping 484 

This study focuses on identifying flood-prone zones in the Haora River Basin of the West Tripura 485 

district using the AHP within a GIS environment. A total of nine parameters that are strongly 486 

associated with flood susceptibility were integrated to develop the composite FSI. The final flood-487 

prone zoning (FSZ) map was created by categorizing the FSI values into five distinct classes. 488 

These classifications were determined using the equal interval classification method, where FSI 489 

values ranged from 0 to 1. The resulting FSZ map for the Haora River Basin is presented in Figure 490 

6, providing a visual representation of the flood susceptibility levels across the study area. This 491 

classification approach provided a systematic representation of the varying levels of flood 492 

susceptibility across the study area.   493 
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  494 

Figure 6: Classification of Flood-Susceptibility Zonation According to the AHP Method (Left) 495 
and Percentage-wise Classification of Flood-Prone Areas in the Haora River Basin (Right) 496 

The weights and rankings assigned to the parameters were calculated using the AHP method. Table 497 

4 outlines the classification, ranking, and weightage of the parameters used in this study, while 498 

Table 5 provides the final weightage values derived from the AHP calculations. Rainfall emerged 499 

as the most influential parameter, receiving the highest weightage of 0.27, followed closely by 500 

elevation (0.26) and slope (0.21). These parameters were identified as critical determinants of 501 

flood susceptibility, given their significant role in influencing surface runoff and flood dynamics.  502 

Conversely, geomorphology and profile curvature, each assigned a weightage of 0.02, were 503 

determined to have the least impact on flood susceptibility in the study area. The consistency index 504 

(CI) value of 0.095, which is below the acceptable threshold of 0.10, confirms the reliability and 505 

robustness of the weightage assignments and ensures the credibility of the AHP methodology 506 

adopted in this study.   507 

 508 

 509 
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Table 4: Flood Susceptibility Assessment Parameter with Classifications, Rankings, and 511 
Weightages  512 

Parameters Class Ranking Weightage 

Rainfall (mm) 

2288–2310 1 

0.27 
2310–2331 2 
2331–2353 3 
2353–2374 4 
2374–2396 5 

LULC 

Water 5 

0.03 
Forest 2 
Crop Land 3 
Urban 4 
Barren/Rangeland 1 

Elevation (m) 

6-56 5 

0.26 
56-107 4 
107-157 3 
157-208 2 
208-258 1 

Proximity to the River (km) 

<2 5 

0.07 
2-3 4 
3-4 3 
4-6 2 
6-8 1 

Slope (Degree) 

<7.8 5 

0.21 
7.8-15.6 4 
15.6-23.4 3 
23.4-31.2 2 
31.2-39 1 

Flow Accumulation (pixels) 

1–44111 1 

0.06 
44112-88222 2 
88223-132333 3 
132334-176444 4 
176445-220553 5 

Geomorphology 

Flat Areas 5 

0.02 
Gently Sloping Areas 4 
Moderately Sloped 3 
Moderate Relief 2 
Steep Areas 1 

Topography Wetness Index 

3-7 1 

0.06 
7-11 2 
11-15 3 
15-19 4 
19-22 5 

Profile Curvature 

-3 to -1.8 1 

0.02 
-1.8 to -0.6 2 
-0.6 to 0.6 3 
0.6 to 1.8 4 
1.8 to 3 5 

The calculated weights were applied to derive the FSI, which was then spatially mapped to 513 

illustrate the distribution of flood susceptibility across the study area. The study revealed that the 514 
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area under the "Very Low" flood-prone category spans 12.89 km², while the "Low" category 515 

covers 24.97 km². Similarly, the "Moderate" flood-prone zone accounts for 24.14 km², followed 516 

by the "High" category with 9.65 km². The "Very High" flood-prone zone emerged as the largest, 517 

occupying 28.36 km² of the total study area. This spatial distribution highlights significant 518 

variations in flood susceptibility, with specific areas being more vulnerable to flooding than others. 519 

Table 5: Pairwise Comparison Matrix for Flood-Prone Area Assessment Using the AHP Method 520 
 

Rainfall Elevation Slope 
Proximity 

to the 
River 

Flow 
Accumul

ation 
TWI LULC 

Geomorp
hology 

Profile 
Curvatur

e 
Rainfall 1 2 2 5 4 6 8 6 9 
Elevation 0.5 1 3 6 4 7 6 8 9 
Slope 0.5 0.33 1 5 8 7 5 6 6 
Proximity to the 
River 0.2 0.17 0.2 1 2 2 4 5 3 
Flow Accumulation 0.25 0.25 0.12 0.5 1 2 3 5 4 
TWI 0.17 0.14 0.14 0.5 0.5 1 4 6 5 
LULC 0.12 0.17 0.2 0.25 0.33 0.25 1 2 3 
Geomorphology 0.17 0.12 0.17 0.2 0.2 0.17 0.5 1 2 
Profile Curvature 0.111 0.11 0.17 0.33 0.25 0.2 0.33 0.5 1 

The dominance of the "Very High" flood-prone zone underscores the vital need for targeted flood 521 

management policies in these regions. These findings emphasize the critical role of rainfall, 522 

elevation, and slope in determining flood vulnerability, while parameters such as geomorphology 523 

and profile curvature play a comparatively minor role. The resulting FSZ map delivers valuable 524 

understandings into flood dynamics within the Haora River Basin, offering a robust tool for flood 525 

management, preparedness, and mitigation planning. This study not only enhances the 526 

understanding of flood-prone areas but also serves as a decision-support framework for 527 

stakeholders aiming to reduce flood risks and their associated impacts in the region. 528 

To classify the Flood Susceptibility Index (FSI), multiple classification schemes—including 529 

natural breaks (Jenks), quantile, and equal interval—were evaluated. While natural breaks often 530 
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optimize class boundaries by minimizing intra-class variance, and quantile ensures equal area 531 

distribution across classes, we selected the equal interval method to maintain consistent class 532 

ranges and preserve the continuous structure of the FSI values. This approach provided a more 533 

balanced visual interpretation and facilitated easier comparison between zones, particularly for 534 

policy and planning purposes. Nonetheless, future studies may explore dynamic classification 535 

methods depending on data skewness and application needs. 536 

4.3. Results of Machine Learning-Based Flood Susceptibility Mapping 537 

Flood susceptibility maps were generated using both the RF and SVM models based on nine 538 

conditioning factors. The output maps were classified into five susceptibility zones: very low, low, 539 

moderate, high, and very high, enabling spatial interpretation of flood vulnerability across the 540 

Haora River Basin. 541 

The RF-derived map in Figure 7 reveals that the central and northern parts of the basin, particularly 542 

along the Haora River corridor, are predominantly classified under high to very high flood 543 

susceptibility, while the southern and eastern regions fall under low to moderate categories. 544 

According to the RF classification summary, approximately 28% of the area falls under the high 545 

category and 15% under very high, indicating significant flood-prone zones. 546 

The SVM-based flood map, Figure 7, presents a similar spatial pattern but with slight differences 547 

in distribution intensity. In this case, 29% of the basin area was classified as moderately 548 

susceptible, while 19% fell under very high and another 19% under high susceptibility. The overall 549 

pattern is consistent with observed flood-prone areas, confirming model reliability. 550 
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   551 

Figure 7: Classification of Flood-Susceptibility Zonation According to the SVM (Left) and 552 
Percentage-wise Classification of Flood-Prone Areas in the Haora River Basin (Right)  553 

The statistical performance of the machine learning models was assessed using three standard error 554 

metrics: MAE, MSE, and RMSE for both the training and validation phases (see Table 6    ). The 555 

RF model demonstrated stronger predictive performance with a training MAE of 0.0195 and 556 

validation MAE of 0.0487, indicating minimal deviation between predicted and actual flood 557 

susceptibility values. The corresponding MSE values were 0.0142 (training) and 0.0228 558 

(validation), while the RMSE values were recorded as 0.1192 and 0.4775, respectively. 559 
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Table 6: Statistical error metrics for RF and SVM models during training and validation phases, 560 
reflecting model accuracy in predicting flood susceptibility. 561 

Models 
MAE MSE RMSE 

Training Validation Training Validation Training Validation 
RF 0.0195 0.0487 0.0142 0.0228 0.1192 0.4775 
SVM 0.0884 0.1035 0.0262 0.0317   0.1619 0.1780 

In comparison, the SVM model exhibited higher error margins, with MAE values of 0.0884 562 

(training) and 0.1035 (validation), and MSE values of 0.0262 and 0.0317, respectively. The RMSE 563 

for SVM reached 0.1619 during training and 0.1780 during validation. These results collectively 564 

indicate that the RF model not only generalized better to unseen data but also maintained a lower 565 

prediction error across all metrics. Thus, Random Forest outperformed SVM in terms of statistical 566 

robustness and predictive reliability for flood susceptibility mapping in the Haora River Basin. 567 

4.4. Stillwell Ranking Methods for Sensitivity Analysis   568 

This study applied sensitivity analysis to assess the significance of each thematic layer and its 569 

impact on the delineation of flood-prone zones within the Haora River Basin. The analysis focused 570 

on understanding the effect of assigned ranks and weights for each class and thematic layer in 571 

determining the final flood-prone index FSI values. This process also helped identify which 572 

thematic layers have the most or least influence in shaping the spatial distribution of flood-prone 573 

zones.  574 

The Stillwell ranking method was applied to compare the weightage derived from the APH with 575 

alternative methods, such as RSW and RRW. Figure 8 compares the weightages between AHP, 576 

RSW, and RRW. At the same time, Table 7 illustrates the comparative weightages, revealing no 577 

significant variations in the criteria ranking across these methods, demonstrating consistency in 578 

the prioritization of influential parameters.   579 
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Table 7: Comparison of AHP Weight Assignments Using Various Methods for Flood-Prone Area 580 
Zonation 581 

Parameters Saaty (1980) Ranking methods: Stillwell (1981) 
Pair wise Rank Sum (RS) Rank Reciprocal (RR) 

AHP Direct 
Rank 

(𝑛 − 𝑟௝ + 1) (𝑛 − 𝑟_𝑗 + 1)

∑(𝑛 − 𝑟௝ + 1)
 

1/𝑟௝ 1/𝑟௝

∑ 1/𝑟௝
 

Rainfall 0.268 1 9 0.200 1.000 0.353 
Elevation 0.261 2 8 0.178 0.500 0.177 
Slope 0.208 3 7 0.156 0.333 0.118 
Proximity to the 
River 

0.073 4 6 0.133 0.250 0.088 

Flow 
Accumulation 

0.064 5 5 0.111 0.200 0.071 

TWI 0.057 6 4 0.089 0.167 0.059 
LULC 0.030 7 3 0.067 0.143 0.050 
Geomorphology 0.022 8 2 0.044 0.125 0.044 
Profile Curvature 0.018 9 1 0.022 0.111 0.039 

 582 

 583 

Figure 8: Bar Plot Comparing the Weightage for Flood-Prone Zonation Using Different 584 
Methods: AHP vs. Rank Reciprocal and Rank Sum. 585 

This analysis validates the robustness of the AHP-derived weights while emphasizing the 586 

importance of rainfall, elevation, and slope as key contributors to flood susceptibility in the Haora 587 

River Basin. Conversely, parameters like geomorphology and profile curvature, which were 588 
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assigned lower weights, also demonstrated consistent rankings, confirming their limited influence. 589 

Overall, the Stillwell ranking methods provide an additional layer of confidence in the AHP-based 590 

flood-prone zone mapping approach for the Haora River Basin. 591 

4.5. Validation of Flood-Prone Zone Mapping Using ROC-AUC Assessments   592 

The predictive accuracy of the AHP, RF, and SVM models was evaluated using the AUC metric 593 

derived from the ROC analysis. The results, illustrated in Figure 9, reveal varying levels of model 594 

performance. The AHP model achieved an AUC value of 0.8485, placing it in the "acceptable" 595 

category (0.8–0.9), which indicates good classification ability in delineating flood-prone areas 596 

across the Haora River Basin. For the machine learning models, both RF and SVM demonstrated 597 

higher predictive accuracy. The RF model recorded AUC scores of 0.8932 and 0.9483 under 598 

different training scenarios, reflecting excellent performance (AUC > 0.9) in distinguishing 599 

flooded and non-flooded zones. The SVM model yielded AUC values of 0.8462 and 0.9260, 600 

indicating a performance ranging from "acceptable" to "excellent." These results confirm that 601 

while AHP offers a reliable baseline, the machine learning models—particularly Random Forest—602 

provided superior classification capabilities for flood susceptibility mapping in the study area. 603 

 604 

Figure 9: ROC curves showing the classification performance of AHP, RF, and SVM models for 605 
flood susceptibility mapping in the Haora River Basin. 606 

 607 
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4.6.Discussion 608 

The flood susceptibility assessment of the Haora River Basin reveals significant hydrological 609 

vulnerability, particularly in the densely populated and low-lying areas surrounding Agartala. The 610 

integration of both AHP-GIS and machine learning approaches (RF, SVM) enabled a robust 611 

analysis that highlights rainfall, elevation, and slope as dominant flood-conditioning parameters. 612 

Rainfall, with a weightage of 0.27, reflects the region's monsoonal intensity, which frequently 613 

triggers rapid runoff and urban inundation. The high sensitivity to elevation (0.26) and slope (0.21) 614 

also underscores the role of terrain in modulating flood pathways, especially in urbanized 615 

floodplains. 616 

The spatial distribution of flood-susceptible zones shows a concentration of "High" and "Very 617 

High" susceptibility in central and northern parts of the basin, particularly along the Haora River 618 

corridor. These patterns are consistent with earlier findings by (Ahmed et al., 2024; Chakraborty 619 

& Pan, 2012), which also identified the Haora and nearby river systems as among the most flood-620 

sensitive in Northeast India. However, unlike previous studies, the present work combines expert-621 

driven (AHP) and data-driven (RF, SVM) techniques within a common geospatial platform. This 622 

integration enhances predictive reliability and compensates for the limitations of using either 623 

approach in isolation. 624 

The novelty of this study lies not only in the application of the traditional AHP-GIS approach but 625 

in its methodological synthesis that combines expert-driven techniques with machine learning-626 

based models to enhance predictive performance. The parameter refinement and modeling 627 

framework was specifically tailored to the data-scarce and topographically complex terrain of 628 

Tripura. The integration of Random Forest and Support Vector Machine models alongside AHP 629 

not only strengthened model robustness but also demonstrated the value of hybrid approaches in 630 
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flood risk assessment for small, data-constrained basins. This is consistent with previous research, 631 

such as Gholami et al. 2025 and  Mohammadifar et al. 2023 which showed that integrating machine 632 

learning models with traditional decision-making techniques improves flood prediction accuracy, 633 

especially in data-limited environments. 634 

The RF model, in particular, showed superior performance with an AUC of 0.9483 and the lowest 635 

validation error metrics, establishing it as a robust tool for future flood susceptibility mapping in 636 

similar physiographic settings. The SVM model also performed well but exhibited slightly higher 637 

error rates, reaffirming that ensemble methods like RF offer better generalization in complex, non-638 

linear flood systems. Demissie et al., 2024, similarly found Random Forest to outperform both 639 

SVM and logistic regression in flood susceptibility modeling, attributing this to RF's robustness in 640 

handling high-dimensional, non-linear datasets. 641 

Among the three models, Random Forest emerged as the most accurate and reliable approach, 642 

offering the lowest error margins and highest classification performance. The Support Vector 643 

Machine, while performing better than AHP in terms of predictive accuracy, was slightly less 644 

consistent than RF. The AHP-GIS method, despite its subjectivity, provided a good baseline 645 

assessment and spatial interpretability, especially valuable in data-scarce contexts.  646 

This research not only confirms the utility of AHP-GIS frameworks for flood risk assessment but 647 

also demonstrates the added value of integrating machine learning models to improve objectivity, 648 

accuracy, and spatial resolution. The proposed methodology is generalizable and adaptable to other 649 

urban catchments across Tripura and similar data-constrained basins in Northeast India and 650 

beyond. In conclusion, this study provides a technically sound, scalable, and policy-relevant 651 

framework for flood susceptibility assessment, contributing significantly to resilient urban 652 

planning, disaster preparedness, and climate adaptation strategies in the region. 653 
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The study also holds direct policy relevance for flood risk governance in Agartala, the capital of 654 

Tripura. The FSZ map serves as a decision-support tool to guide municipal planners and disaster 655 

management agencies in identifying priority areas for structural and non-structural mitigation. 656 

Zones under "Very High" susceptibility demand targeted interventions such as levee construction, 657 

improved urban drainage systems, enforcement of no-development zones, and restoration of 658 

natural floodplains. Integrating this spatial output into the city's master planning, zoning 659 

regulations, and early warning protocols can significantly reduce flood exposure. Furthermore, 660 

these high-risk areas offer opportunities for implementing nature-based solutions such as urban 661 

green buffers, rainwater harvesting zones, and retention ponds to enhance flood resilience. The 662 

FSZ map can also support evidence-based resource allocation, improve emergency preparedness, 663 

and inform future land use decisions in a rapidly urbanizing floodplain. 664 

Nonetheless, the study has several limitations. The absence of real-time hydrological inputs, such 665 

as water level and discharge measurements, constrained the temporal dynamics of flood prediction. 666 

The reliance on subjective expert judgment in AHP, although mitigated through sensitivity 667 

analysis and model comparison, still introduces a degree of bias. The exclusion of socio-economic 668 

vulnerability indicators, such as population density, housing quality, and critical infrastructure 669 

which limits the risk analysis to physical exposure alone. 670 

Future research could address these gaps by integrating real-time flood forecasting systems, which 671 

are already being piloted in cities like Pune (India) and Jakarta (Indonesia) through IoT-based 672 

sensors and satellite-radar integration. Moreover, the use of Fuzzy AHP, entropy weighting, or 673 

hybrid MCDM–ML frameworks could reduce subjectivity and enhance modeling robustness. The 674 

inclusion of social vulnerability datasets from census and municipal sources would enable a shift 675 

from flood susceptibility mapping to comprehensive flood risk assessment. 676 
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Overall, this study advances flood-prone mapping methodologies by demonstrating that a 677 

synergistic approach—combining expert knowledge and machine learning—can effectively 678 

delineate flood vulnerability in small, data-constrained river basins. It offers both scientific rigor 679 

and policy-oriented outputs that are essential for flood-resilient urban planning in the Haora River 680 

Basin and beyond. 681 

5. Concluding Remarks 682 

This study successfully delineated flood-susceptible zones (FSZ) in the Haora River Basin, a 683 

hydrologically vulnerable region within the West Tripura district, by integrating the Analytic 684 

Hierarchy Process (AHP) with Geographic Information System (GIS) tools. Additionally, to 685 

improve model accuracy and reduce subjectivity, machine learning models like Random Forest 686 

(RF) and Support Vector Machine (SVM) were also applied, offering a comparative and hybrid 687 

framework for flood susceptibility assessment in data-scarce basins. A total of nine flood-688 

conditioning parameters were considered, including topographic, hydrological, and land-use 689 

variables. The study produced multiple susceptibility maps that collectively provide a detailed 690 

understanding of flood-prone areas in the basin. The major findings are summarized below: 691 

I. Rainfall was identified as the most influential parameter in flood susceptibility, receiving 692 

a weightage of 0.27, followed by elevation (0.26) and slope (0.21), highlighting the role of 693 

intense monsoonal precipitation and terrain characteristics in influencing flood behavior. 694 

II. The AHP-derived FSZ map showed that the "Very High" flood-prone zone accounts for 695 

the largest area (28%), confirming substantial hydrological vulnerability, especially in low-696 

lying, urbanized regions near Agartala. 697 

III. In comparison, the RF model identified 15% and the SVM model delineated 19% of the 698 

total catchment area under the "Very High" susceptibility category. Although there are 699 
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minor differences in spatial extent, all three models consistently highlighted the central 700 

basin and Agartala region as zones of elevated flood risk. 701 

IV. The AHP model achieved an ROC-AUC value of 0.8485, indicating "acceptable" 702 

predictive accuracy. In comparison, the RF model attained an AUC of 0.9483, and SVM 703 

recorded 0.9260, both falling into the "excellent" category, demonstrating the superior 704 

predictive capability of machine learning approaches. 705 

V. Among the three approaches, Random Forest emerged as the most accurate and reliable 706 

model for flood susceptibility mapping. At the same time, AHP offered valuable expert-707 

driven spatial interpretation, and SVM provided a strong intermediate performance. 708 

This research confirms the utility of the AHP-GIS framework and demonstrates the added value 709 

of integrating machine learning to enhance model accuracy and objectivity. While the 710 

methodology is generalizable to other flood-prone, data-scarce basins, the current study is limited 711 

by the absence of dynamic hydrological data and socio-economic indicators. Future work may 712 

address these gaps by incorporating real-time monitoring systems and broader vulnerability 713 

metrics. Overall, the FSZ map developed in this study can serve as a planning tool for Agartala's 714 

municipal authorities by identifying high-risk flood zones where interventions such as improved 715 

drainage, land-use zoning restrictions, and early warning systems should be prioritized to enhance 716 

urban flood resilience. 717 

 718 
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 720 
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